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A. Introduction 

Macrophages (Me/» can be activated to 
show highly selective cytotoxicity toward 
malignant cells in vitro [6, 8, 9, 13, 14] and 
there is some evidence that they may destroy 
neoplastic cells in vivo [1]. The importance 
of activated Me/> (aMe/» in controlling tumor 
growth in vivo has been further implicated in 
experiments involving murine ultraviolet 
light (UV)-induced tumors, which are highly 
immunogenic regressor tumors [10] sensitive 
to Me/> in vitro [22]. Variants of these tumors 
demonstrating progressive growth in the 
normal host were found to invariably ex
press an increased resistance to aMe/> [22]. 
Furthermore, exposure of regressor tumor 
cells to aMe/> in vitro also resulted in selec
tion for Me/>-resistant cancer cells which dis
played an increased early growth potential 
in vivo [22]. More recently we have utilized 
these tumor variants resistant to aMe/> to ex
plore the mechanism by which aMe/> induce 
tumor cell destruction [23]. Our results sug
gest a major role for tumor necrosis factor 
type ex (TNF-ex) in Me/>-mediated tumor cell 
killing in vitro and in vivo [23]. 
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B. Methods 

Me/> were peritoneal exudate cells obtained 
from thioglycollate-primed C3H/HeN 
(MTY-) mice, activated in vitro for 6 h with 
lipopolysaccharide and lymphokine and 
used as effectors in a 16-h 51Cr release assay, 
a 72-h 51Cr postlabelling assay, or a 72-h 
[3H]-thymidine release assay as described 
[22, 23]. C3H/HeN (MTY-) mice were ob
tained from the National Cancer Institute, 
Frederick Cancer Research Facility. The 
UV-induced tumors 1591-RE and 2240-RE 
were induced in these mice by M. L. Kripke 
[10]. Human recombinant (r) TNF-ex [18], B
cell lymphotoxin (TNF-fJ) [7], murine 
rTNF-ex [19], polyclonal rabbit antibody to 
murine rTNF-ex, and monoclonal antibody 
to human rTNF-ex were produced at Ge
nentech (South San Francisco, CA). Recom
binant murine interleukin 1 (IL-1) [12] was 
kindly provided by Hoffman-LaRoche. 

c. Results 

Me/> are known to secrete a number of differ
ent cytotoxic substances, including interleu
kin 1 (lL-1) [16], reactive oxygen intermedi
ates, such as hydrogen peroxide [15] and 
TNF-ex [5, 18, 21]. To test each of these as 
potential mediators of Me/>-dependent tu
mor cytotoxicity, we analyzed each for pref
erential killing of the 1591 parent tumor 
over several of its Me/>-resistant variants. 
Figure 1 shows that of these substances, 
only human rTNF-ex demonstrated selective 
killing of the parent tumor over M¢-resis
tant variants isolated in vitro (panel d) or in 
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Fig. I a-h. Sensitivity of Mcf>-resistant 1591 tumor 
variants to soluble mediators of cytotoxicity. Re
sults utilizing Mcf>-resistant variants selected in vi
tro are shown in a-d and results with variants se
lected in vivo are shown in e-h. Mcf> were activated 
as described [23] and used as effectors in a 16 h 
51Cr release assay (a and e); 10T1/2 fibroblasts 
were used as negative controls. Murine rIL-1 was 
quantified using a thymocyte proliferation assay 
[12] with heat-inactivated IL-1 used as a negative 
control. Hydrogen peroxide was generated using 

vivo (panel h). This closely mimicked the ac
tion of aMcf> themselves on these targets 
(Fig. 1, panels a, e). Furthermore, the effects 
of human rTNF -ex on 1591 were completely 
neutralized by preincubation with a mono
clonal antibody directed against human 
rTNF-ex (Fig. 2d, negative control). The re
sistance of the variants to aMcf> and human 
rTNF-ex was selective in that the variants 
were fully sensitive to the effects of osmotic 
lysis, natural killer cells, and cytolytic T cells 
[23]. 

To confirm the linkage between resistance 
to human rTNF-ex and resistance to aM¢, 
two human rTNF-ex-resistant 1591 cell lines 
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glucose oxidase [15] with 1 unit defined as the gen
eration of 1 Jlmol H20 2 per min. Catalase added 
at 40 units/well served as the negative control. 
Susceptibility to human rTNF -ex was analyzed in 
a 72 h 51Cr postlabelling assay [22]. The negative 
control consisted of preincubation with monoclo
nal anti-TNF-ex antibody at 1.85 Jlg/ml for 16 h. 
The data represent pooled values from three sepa
rate experiments with the SEM for each point in
dicated as ~ 10% of the value of each point shown 
[23] 

were selected and tested for resistance to 
aMcf>. Figure 2a shows that these human 
rTNF -ex-resistant variants were substantially 
more resistant to aMcf> than was the parental 
1591 tumor. The small residual sensitivity of 
the variants to aM¢ was completely abro
gated by selecting with murine rather than 
with human rTNF-ex (Fig. 2a). Additional 
evidence to suggest that the observed cyto
toxic effects of aMcf> and TNF -ex follow iden
tical pathways is given in Fig. 2 b. Increasing 
concentrations of a polyclonal antibody that 
neutralizes murine rTNF-ex inhibited aMcf> 
killing of 1591 in a dose-dependent fashion, 
whereas incubation of aM¢ with preim-
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Fig.2. a Complete resistance of the variants se- 
lected with murine rTNF-a to the cytolytic effects 
of aM4. Variants selected with human rTNF-a 
show only partial resistance. b Neutralization of 
Mq5-mediated tumor cytotoxicity using rabbit 

polyclonal antibody against murine rTNF-U. 
Data represent the pooled results from two experi- 
ments using a modified 51Cr release assay [22, 
231 

mune Serum resulted in a cytotoxic response 
similar to that of aM4 alone. 

Human TNF-ß is a cytotoxic protein 
whose sequence is about 30% homologous 
to human TNF-a [2]. Figure 3 shows that 
human TNF-ß was identical to human 
TNF-a in exerting a potent selective cyto- 
toxic effect on the parental 1591 tumor over 
the 1591 M4-resistant variant. This result 
raises the possibility that TNF-a and TNF-ß 
employ common effector pathways, a sug- 
gestion consistent with other data indicating 

FACTOR TARGET 

Fig. 3. Resistance of the M&selected 1591 tumor 
variant to the cytotoxic effects of human rTNF-a 
and human rTNF-ß. The parental 1591 tumor 
cells are equally sensitive to both recombinant 
proteins in a 72 h 51Cr postlabelling assay. The 
data represent pooled values from two separate 
experiments [23] Tumor Necrosis Fac tor (U/wel I) 



that human rTNF-a and human rTNF-,B 
compete for the same cellular receptor [3]. 

D. Discussion 

Our results strongly suggest that TNF -a is 
an important effector molecule mediating 
M¢-dependent tumor cytotoxicity. All of 
the classical tumoricidal effects of aM¢ we 
observed on the 1591 tumor could be ac
counted for by TNF-a released from aM¢. 
This was substantiated by the evidence that 
antibody to murine rTNF-a blocked the tu
moricidal effects of aM¢. Furthermore, se
lection with either aM¢ or murine rTNF-a 
led to simultaneous resistance to both aM¢ 
and TNF-a, but not to resistance to other tu
moricidal mediators including IL-1 and hy
drogen peroxide. The fact that these variants 
also retained their sensitivity to NK cells and 
cytolytic T cells [23] is consistent with other 
data suggesting that these cytolytic effector 
cells act through a lytic mechanism distinct 
from that of aM¢ [1]. 

M¢-resistant tumor variants isolated in 
vitro have been shown to display enhanced 
growth in the normal host [22], but the role 
of aM¢ in destroying or inhibiting nascent 
tumor cell growth is not fully understood. 
Furthermore, the precise mechanism by 
which TNF-a from aM¢ reaches the target 
cell remains unknown. In vivo, cell-to-cell 
contact may be required to prevent rapid 
diffusion and to assure a sufficiently high lo
cal concentration of TNF-a in the narrow 
space between the aM¢ and the bound tar
get cell, while in vitro contact may only be 
required for less sensitive target cells. 

The variants we have derived from selec
tion with either aM¢ or rTNF-a retain their 
phenotype through prolonged passage in 
vivo or in vitro and it is clear that the resis
tance is heritable and may, therefore, have a 
genetic basis. Whether resistance to TNF-a 
may be associated with a decrease in the 
number ofTNF receptors on the tumor cells 
has been investigated [4, 11, 20]. The vari
ants we have described provide a new tool 
with which to dissect the precise mechanism 
ofM¢-mediated cytotoxicity and to uncover 
the molecular and genetic mechanisms of 
malignant transformation leading to suscep
tibility to aM¢. A study of these variants 
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should also provide insight into how tumor 
cells become resistant to aM¢ and TNF-a 
and how we might overcome this resistance. 
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